50 nm Copper Oxide Nanoparticles

Product Number


Copper oxide nanoparticles now available! We welcome any questions or feedback you have about this material.1

  • Mean diameter: 50 nm ± 10 nm
  • Size distribution (CV) < 15%
  • Available as NanoXact at 1 mg/mL concentration
  • Particles have a PVP surface and are provided in aqueous 1 mg/mL PVP

1. Please note: Product still under development. Long-term availability of this size may not be guaranteed.

Product Lines

Tight Size
Wide Variety
of Surfaces
Guaranteed Sterile
& Endotoxin-Free
Learn more +
(certain products)

(certain products)
  • Monodisperse and unagglomerated
  • Standard colloidal concentration (~1 OD)
  • Seven standard surfaces (citrate, tannic, PVP, lipoic acid, PEG, BPEI, silica)

Which Surface Should I Choose?

Surface Displaceable Salt
Stable in
Stable in
Stable in
Polar Organics
Stable in
Non-Polar Organics
Conjugatable Charge
at pH 7
PVP (Polyvinylpyrrolidone) Learn more +
  • Associates very strongly to metal surfaces, giving excellent colloidal stability over a wide range of conditions
  • Nanoparticles can be dispersed in a wide variety of protic and aprotic polar solvents
  • Stable in high ionic strength solutions and at high concentrations

Certificate of Analysis Examples

Please note that these are representative Certificates of Analyses (CoAs) provided as examples for this product. We provide a unique batch-specific CoA with each product during shipment; only the CoA that arrives with your product should be referred to for actual characterization and measurement data. If you would like an electronic copy of the CoA for the product you received or the material(s) we currently have in stock, please contact us.

Product Line Surface Example Certificate of Analysis Product # Price
N NanoXact, 1 mg/mL PVP Download ↓ CXPH50-1M $225+
N NanoXact, 1 mg/mL PVP Download ↓ CXPH50-5M $950+
N NanoXact, 1 mg/mL PVP Download ↓ CXPH50-10M $1,625+
N NanoXact, 1 mg/mL PVP Download ↓ CXPH50-30M $3,450+

Need help reading our Certificates of Analysis? +


Copper oxide nanoparticles from nanoComposix have a polyvinylpyrrolidone (PVP) surface and are available in standard sizes of 30 nm and 50 nm diameters. The particles have very good size and shape uniformity, and are provided in water at 1 mg/mL.

Cuprous oxide (Cu2O) is a p-type semiconductor with interesting excitonic features and a bulk band gap of 2.17 eV. Recently, several studies have demonstrated the potential of Cu2O for gas sensing, photodegradation of dye molecules, CO oxidation, photo-activated water splitting, as anti-bacterial material for sterilization and as electrode material for lithium ion batteries.

The optical properties of Cu2O nanoparticles are highly size-dependent, and exhibit contributions from the semiconductor absorption and light scattering from the particles.

The size, capping agent, and dispersion media of cuprous oxide (Cu2O) nanoparticles can be tuned for your application. NanoComposix has successfully manufactured monodisperse cuprous oxide (Cu2O) nanoparticles with sizes or diameters tunable from 30 nm up to 240 nm, and dried, redispersible samples are available in some instances. Contact us for more information on our custom fabrication capabilities.


  • Snoke, D. Spontaneous Bose coherence of excitons and polaritons. (2002). Science. 298, 1368-1372. DOI: dx.doi.org/10.1126/science.1078082
  • Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J. M. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. (2000). Nature. 407, 496-499.
  • Jiang, W. J., Yin, Y., Liu, X. Q., Yin, X. Q., Shi, Y. Q., Sun, L. B. Fabrication of Supported Cuprous Sites at Low Temperatures: An Efficient, Controllable Strategy Using Vapor-Induced Reduction. (2013). J. Am. Chem. Soc. 135, 8137-8140. DOI: 10.1021/ja4030269.
  • White, B., Yin, M., Hall, A., Le, D., Stolbov, S., Rahman, T., Turro, N., O’Brien, S. Complete CO oxidation over Cu2O nanoparticles supported on silica gel. (2006). Nano Lett. 6, 2095-2098. DOI: 10.1021/nl061457v.
  • Ng, C. H. B., Fan, W. Y. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. (2006). J. Phys. Chem. B 110, 20801-20807. DOI: 10.1021/jp061835k.
  • Zhang, J. T., Liu, J. F., Peng, Q., Wang, X., Li, Y. D. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and application for sensitive gas sensors. (2006). Chem. Mater. 18, 867-871. DOI: 10.1021/cm052256f.
  • Xu, H. L., Wang, W. Z., Zhu, W. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. (2006). J. Phys. Chem. B 110, 13829-13834. DOI: 10.1021/jp061934y.
  • Hara, M., Kondo, T., Komoda, M., Ikeda, S., Shinohara, K., Tanaka, A., Kondo, J. N., Domen, K. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. (1998). Chem. Comm. 3, 357-358. DOI: 10.1039/a707440i.